

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

(МИНОБРНАУКИ РОССИИ)

Тре	neragyu u 11 em 1 / Mo	сква, 125009, телефон: (495) 547-13-16,
		v.ru, http://www.minobrnauki.gov.ru
14.06.2023	<u>№</u> MH-5/179660	
На №	OT	
		Руководителям образовательных организаций высшего образования

О направлении модуля

Департамент государственной политики в сфере высшего образования Министерства науки и высшего образования Российской Федерации в рамках исполнения подпункта «б» пункта 1 перечня поручений Президента Российской Федерации от 29 января 2023 г. № Пр-172 направляет актуализированный Ассоциацией «Альянс сфере совместно искусственного образовательный модуль «Системы интеллекта» искусственного интеллекта» для включения в образовательные программы высшего образования и дополнительные профессиональные программы, планируемые к реализации в 2023/24 учебном году.

Приложение: на 34 л. в 1 экз.

Директор Департамента государственной политики в сфере высшего образования

Т.В. Рябко

Борунова Мария Витальевна (495) 547-13-66 (7327)

МОДУЛЬ «СИСТЕМЫ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА»

РАБОЧАЯ ПРОГРАММА МОДУЛЯ

(ПРОТОТИП)

ОГЛАВЛЕНИЕ

1.	Планируемые результаты обучения по модулю, соотнесенные с планируемыми
рез	ультатами освоения образовательной программы4
2.	Место модуля в структуре образовательной программы
3.	Объем модуля
4.	Содержание модуля, структурированное по блокам учебных дисциплин с указанием
отв	еденного на них количества академических или астрономических часов и видов
уче	бных занятий
5.	Учебно-методическое обеспечение самостоятельной работы студентов11
6.	Фонд оценочных средств для проведения текущего контроля и промежуточной
атт	естации студентов по модулю12
7.	Перечень основной и дополнительной учебной литературы, необходимой для
осв	воения модуля
8.	Перечень ресурсов сети "Интернет", рекомендуемых для самостоятельной работы при
осв	оении модуля14
9.	Методические указания для студентов по освоению модуля
10.	Перечень информационных технологий, используемых при изучении модуля,
ВКЛ	почая перечень программного обеспечения и информационных справочных систем17
11.	Описание материально-технической базы, необходимой для изучения модуля18
12.	Лист изменений и дополнений, внесенных в рабочую программу модуля19

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО МОДУЛЮ, СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Настоящая рабочая программа модуля устанавливает требования к знаниям и умениям студента, а также определяет содержание и виды учебных занятий и отчетности.

Код компетенции	Формулировка компетенции (в соответствии с ФГОС или СУОС)
	Профессиональные
ПК-1	Способность использовать знание основных методов искусственного интеллекта в последующей профессиональной деятельности в качестве научных сотрудников, преподавателей образовательных организаций высшего образования, инженеров, технологов
ПК-2	Способен выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности в области моделирования и анализа сложных естественных и искусственных систем

Для категорий «знать, уметь, владеть» планируется достижение результатов обучения, вносящих на соответствующих уровнях вклад в формирование компетенций, предусмотренных основной профессиональной образовательной программой (ОПОП) (таблица 1).

Таблица 1. Результаты обучения

		Taosinga 1.1 esystemator ooy tenina
1	2	3
	Результаты обучения.	
	Дескрипторы – основные признаки освоения	Формы и методы обучения, способствующие
Компетенция: код	компетенций (показатели достижения	формированию и развитию компетенции
	результатов обучения)	
ПК 1	ЗНАТЬ	Лекции
Способность использовать		Лабораторные работы
знание основных методов	Методы разработки оригинальных алгоритмов	Практика
искусственного интеллекта в	и программных решений с использованием	Самостоятельная работа
последующей профессиональной	современных технологий	Активные и интерактивные формы (методы)
деятельности в качестве	-	обучения
научных сотрудников,		
преподавателей		
образовательных организаций		
высшего образования,		
инженеров, технологов		
ПК-2	ВЛАДЕТЬ	Лекции
Способен выявить		Лабораторные работы
естественнонаучную сущность	Навыками декомпозиции, формализации процессов	Практика
проблем, возникающих в ходе	и объектов для использования интеллектуальных	Самостоятельная работа
профессиональной деятельности	программных решений	Активные и интерактивные формы (методы)
в области моделирования и		обучения
анализа сложных естественных и		
искусственных систем		

2. МЕСТО МОДУЛЯ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Модуль входит в блок Б1 «Дисциплины (модули)» образовательной программы.

Изучение модуля предполагает предварительное освоение следующих дисциплин учебного плана (например):

Основы программирования на Python

Математический анализ

Линейная алгебра

Теория вероятностей и математическая статистика

Методы оптимизации (для уровней «продвинутый» и «экспертный»)

Примечание: в зависимости от глубины проработки модуля (например, для технических и нетехнических специальностей), также меняются требования к пререквизитам. Так, для студентов нетехнических специальностей достаточно нескольких элементов вышеупомянутых дисциплин, например, вектора, матрицы и основные операции с ними из линейной алгебры. Для заполнения пробелов в пререквизитах можно в начале модуля провести короткий математический ликбез.

Освоение модуля связано с формированием компетенций с учетом матрицы компетенций ОПОП для соответствующего направления подготовки (специальности).

3. ОБЪЕМ МОДУЛЯ

Общий объем модуля составляет 72 академических часов, в том числе 18 часов практики.

Таблица 2. Объем модуля по видам учебных занятий (в академических часах)

Виды учебной работы	Всего часов
Объем модуля	72
Аудиторная работа	34
Лекции (Л)	17
Лабораторные работы (ЛР)	17
Практика	18
Самостоятельная работа (СР)	20
Проработка учебного материала лекций	4
Подготовка к лабораторным работам, практике	7
Подготовка к текущему контролю и промежуточной аттестации	2
Другие виды самостоятельной работы	7
Вид промежуточной аттестации	Зачет

4. СОДЕРЖАНИЕ МОДУЛЯ, СТРУКТУРИРОВАННОЕ ПО БЛОКАМ УЧЕБНЫХ ДИСЦИПЛИН С УКАЗАНИЕМ ОТВЕДЕННОГО НА НИХ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ИЛИ АСТРОНОМИЧЕСКИХ ЧАСОВ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ

Таблица 3. Содержание модуля

Тема	Виды занятий, часы*			Активные и интерактивные формы проведения занятий		Текущий контроль результатов обучения		
(название)	Л	ЛР	СР	Пр акт ика	Форма проведения занятий	Часы	Формы	Баллы (мин/ макс)
Введение в искусственный интеллект и							30/50 Контроль	30/50
основные методы машинного обучения для работы с табличными данными	10	8	7	10	Обсуждение практических примеров	2		30/50
Системы глубокого обучения	5	6	6	4	на лекциях	1	Контроль	30/50 30/50
Обучение с подкреплени ем	2	2	2	4		1	Контроль	30/50 30/50
ИТОГО	17	16	15	18	-	4		60/100

^{*} $\Pi -$ лекции;

ЛР – лабораторные работы;

СР – самостоятельная работа.

Содержание модуля, структурированное по темам

Примечание: данное содержание соответствует модулю уровня «продвинутый». В зависимости от уровня подготовки студентов можно сократить и упростить модуль до уровня «базовый» или расширить и усложнить до уровня «экспертный».

№, п/п	Наименование модуля, содержание	Часы		
1	«Введение в искусственный интеллект и основные методы			
1	машинного обучения для работы с табличными данными»			
	Лекции	10		
1.1-	[Опционально: математический ликбез по элементам математической статистики, линейной алгебры и математического анализа.]	10		
1.5	Основные задачи систем искусственного интеллекта. Классификация, кластеризация, регрессия. Типы машинного обучения: с учителем, без	,		

привлечением обучение учителя, частичным учителя, подкреплением. Классификация на примере алгоритма k-ближайших соседей (kNN) [Опционально: Быстрый поиск ближайших соседей.]. Метрики оценки классификации: полнота, точность, F1, ROC, AUC. Валидационная и тестовая выборка. Кросс-валидация. Работа с категориальными признаками. Регрессия. Метрики оценки регрессии: MSE, MAE, R2 – коэффициент детерминации. Линейная регрессия, полиномиальная Переобучение и регуляризация, гребневая регрессия, LASSO, Elastic Net. Линейные модели для классификации. Перцептрон, логистическая регрессия, полносвязные нейронные сети, стохастический градиентный спуск и обратное распространение градиента. Регуляризация линейных моделей классификациии. k-means, Кластеризация. k-means++, DBSCAN, агломеративная кластеризация. Метрики оценки кластеризации. Алгоритмы, основанные на применении решающих деревьев. Критерии разделения узла: информационный выигрыш, критерий Джини. Ансамбли решающих деревьев: случайный лес, градиентный бустинг. Метод опорных векторов. Прямая и обратная задача. Определение опорных векторов. Ядерный трюк. Наивный байесовский классификатор. Методы оценки распределения признаков. ЕМ-алгоритм на примере смеси гауссиан. Методы безградиентной оптимизации: случайный поиск, hill climb, отжиг, генетический алгоритм. Лабораторные работы 8 Методы работы с таблицами в Python. Агрегация и визуализация ЛР1.1 2 данных. Проведение первичного анализа данных. Использование и сравнение алгоритмов классификации: kNN, ЛР1.2 2 решающие деревьея и их ансамбли, логистическая регрессия. Использование и оценка алгоритмов регрессии. Подбор оптимальных ЛР1.3 2 параметров регрессии. Оптимизационные задачи и их решения. Подбор гиперпараметров ЛР1.4 2 алгоритма с помощью методов оптимизации. 10 Практика 10 ПР1.1 Программно-алгоритмическое освоение материала Самостоятельная работа CP1.1 Проработка учебного материала лекций 1 CP1.2 Подготовка к лабораторным работам 4 CP1.3 Подготовка к рубежному контролю 1 CP1.4 Другие виды самостоятельной работы 1 2 «Системы глубокого обучения» Лекции 5

	Нейронные сети. Функции ошибки нейронных сетей и обучение с помощью обратного распространения градиента. Понятие бэтча и эпохи.	
2.1- 2.3	Работа с изображениями с помощью нейронных сетей. Сверточные нейронные сети. Операции сверток, max-pooling. Популярные архитектуры сверточных нейронных сетей: AlexNet, VGG, Inception (GoogLeNet), ResNet. Трансферное обучение.	5
	Обработка текстов. Работа с естественным языком с помощью нейронных сетей. Векторные представления для текста: word2vec, skipgram, CBOW, fasttext. Рекуррентные нейронные сети, LSTM, GRU. Трансформеры, BERT, GPT.	
	Лабораторные работы	6
ЛР2.1	Классификация изображений и трансферное обучение.	3
ЛР2.2	Работа с текстами и их векторными представлениями текстов.	3
	Практика	4
ПР 2.1	Программно-алгоритмическое освоение материала	4
	Самостоятельная работа	6
CP2.1	Проработка учебного материала лекций	1
CP2.2	Подготовка к лабораторным работам	3
CP2.3	Подготовка к рубежному контролю	1
CP2.4	Другие виды самостоятельной работы	1
3	«Обучение с подкреплением»	
	Лекции	2
	Понятия агента, среды, состояния, действий и награды. Функция	
	ценности состояния (Value function) и функция качества действия (Q-	
3.1-	funtion). Оптимизация стратегии с помощью максимизации функций	2
3.2	ценности и качества. Q-обучение.	2
	Глубокое обучение с подкреплением. Deep Q-Networks, Actor-critic.	
	Для уровня экспертный: REINFORCE, A2C, PPO, DDPG.	
	Лабораторные работы	2
ЛР3.1	Применение Q-Networks для решения простых окружений.	2
	Практика	4
ПР 3.1	Программно-алгоритмическое освоение материала	4
	Самостоятельная работа	2
CP3.1	Проработка учебного материала лекций	0.5
CP3.2	Подготовка к лабораторным работам	0.5
CP3.3	Подготовка к рубежному контролю	0.5
CP3.4	Другие виды самостоятельной работы	0.5

5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Для обеспечения самостоятельной работы студентов по Модулю сформирован методический комплекс, включающий в себя следующие учебно-методические материалы:

- 1. Программа курса.
- 2. Учебники и учебные пособия.
- 3. Список адресов сайтов в информационно-телекоммуникационной сети «Интернет» (далее сеть «Интернет»), содержащих актуальную информацию по блокам Модуля.

Библиографические ссылки на учебные издания, входящие в методический комплекс, приведены в перечне основной и дополнительной учебной литературы, необходимой для освоения Модуля (раздел 7).

К дополнительным материалам также относится перечень ресурсов сети «Интернет», рекомендуемых для самостоятельной работы при освоении Модуля (раздел 8).

Студенты получают доступ к указанным материалам на первом занятии по Модулю.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ СТУДЕНТОВ ПО МОДУЛЮ

Фонд оценочных средств (ФОС) для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся по Модулю базируется на перечне компетенций с указанием этапов их формирования в процессе освоения ОПОП (раздел 1). ФОС обеспечивает объективный контроль достижения всех результатов обучения, запланированных для Модуля.

ФОС включает в себя:

описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;

методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций; типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений и уровня овладения формирующимися компетенциями в процессе освоения Модуля.

ФОС является приложением к данной программе Модуля.

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ УЧЕБНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ МОДУЛЯ

7.1. Основная литература по модулю

- 1. Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных. Петер Флах. ДМК Пресс. 2015.
- 2. Глубокое обучение. Погружение в мир нейронных сетей Николенко Сергей Игоревич, Кадурин А. А. | Николенко Сергей Игоревич, Кадурин А. А.
- 3. Обучение с подкреплением / Саттон Ричард С., Барто Эндрю Г., ДМК Пресс, 2020.

7.2. Дополнительные учебные материалы

- 4. Основы искусственного интеллекта : учебное пособие / Е.В.Боровская, Н. А. Давыдова. 4-е изд., электрон. М. : Лаборатория знаний, 2020. 130 с.
 - 5. Искусственный интеллект с примерами на Python. Джоши Пратик. Вильямс. 2019.
- 6. Прикладное машинное обучение с помощью Scikit-Learn, Keras и TensorFlow: концепции, инструменты и техники для создания интеллектуальных систем, 2-е издание. Жерон Орельен. Диалектика-Вильямс. 2020.
- 7. Хенрик Бринк, Джозеф Ричардс, Марк Феверолф «Машинное обучение», Питер 2017.
- 8. Как учится машина: Революция в области нейронных сетей и глубокого обучения. Ян Лекун. Альпина PRO. 2021.
 - 9. Грокаем глубокое обучение. Эндрю Траск. Питер. 2019.
- 10. Обучение с подкреплением на РуТогсh. Сборник рецептов. Юси Лю. ДМК Пресс. 2020.
 - 11. https://spinningup.openai.com/en/latest/

8. ПРИМЕРНЫЙ ПЕРЕЧЕНЬ РЕСУРСОВ СЕТИ «ИНТЕРНЕТ», РЕКОМЕНДУЕМЫХ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ПРИ ОСВОЕНИИ МОДУЛЯ

- 1. Open Machine Learning Course (https://mlcourse.ai)
- 2. Введение в машинное обучение от «Bioinformatic Institute» (https://stepik.org/course/4852/promo)
- 3. Специализация Машинное обучение и анализ данных от «Московский физикотехнический институт» (https://ru.coursera.org/specializations/machine-learning-data-analysis)
- 4. Платформа для проведения соревнований по Data Science (https://www.kaggle.com)

5. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ СТУДЕНТОВ ПО ОСВОЕНИЮ МОДУЛЯ

Приступая к работе, каждый студент должен принимать во внимание нижеследующие положения.

Каждый блок Модуля представляет собой логически завершенный раздел курса. Модуль делится на два блока.

На первом занятии студент получает информацию для доступа к комплексу учебнометодических материалов по Модулю.

Лекционные занятия посвящены рассмотрению ключевых, базовых положений курса и разъяснению учебных заданий, выносимых на самостоятельную проработку.

Лабораторные работы предназначены для приобретения опыта практической реализации основной профессиональной образовательной программы. Методические указания к лабораторным работам прорабатываются студентами во время самостоятельной подготовки. Необходимый уровень подготовки контролируется перед проведением лабораторных работ.

Самостоятельная работа студентов включает следующие виды: проработка учебного материала лекций, подготовка к лабораторным работам, подготовка к текущему контролю и другие виды самостоятельной работы. Результаты всех видов работы студентов формируются в виде их личного рейтинга, который учитывается на промежуточной аттестации. Самостоятельная работа предусматривает не только проработку материалов лекционного курса, но и их расширение в результате поиска, анализа, структурирования и представления в компактном виде современной информации из всех возможных источников.

Текущий контроль успеваемости проводится в течение каждого модуля.

Освоение Модуля и его успешное завершение на стадии промежуточной аттестации возможно только при регулярной работе во время семестра и планомерном прохождении текущего контроля. Набрать рейтинг по всем блокам Модуля в каждом семестре, пройти плановые контрольные мероприятия в течение экзаменационной сессии невозможно.

Для завершения работы в семестре студент должен выполнить все контрольные мероприятия.

Промежуточная аттестация по Модулю проходит в форме зачета.

Методика оценки по рейтингу (один из возможных вариантов).

Студент, выполнивший все предусмотренные учебным планом задания и сдавший все контрольные мероприятия, получает итоговую оценку по Модулю за семестр в соответствии со шкалой:

Рейтинг	Оценка на зачете
85 - 100	
71 - 84	Зачет
60 - 70	
0 - 59	Незачет

6. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ИЗУЧЕНИИ МОДУЛЯ, ВКЛЮЧАЯ ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

В процессе преподавания Модуля используются следующие методы, средства и обновляемое при необходимости программное обеспечение информационных технологий:

е-mail преподавателя;

электронные учебно-методические материалы для обеспечения самостоятельной работы студентов;

список сайтов в сети «Интернет» для поиска научно-технической информации по разделам дисциплины;

пакеты прикладных программ, например, pytorch.

7. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ИЗУЧЕНИЯ МОДУЛЯ

Перечень материально-технического обеспечения Модуля

№ п/п	Вид занятий	Вид и наименование оборудования
1	Лекционные занятия	Аудитории с мультимедийными средствами, средствами звуковоспроизведения и имеющие выход в сеть «Интернет». Помещения для проведения аудиторных занятий, оборудованные учебной мебелью
2	Лабораторные работы	Компьютерный класс с комплексом программных средств, позволяющих каждому студенту разрабатывать программные реализации практических задач в ходе выполнения лабораторных работ
3	Самостоятельная работа	Библиотека, имеющая рабочие места для студентов. Аудитории, оснащенные компьютерами с доступом к сети «Интернет»
4	Практика	Компьютерный класс с комплексом программных средств, позволяющих каждому студенту разрабатывать программные реализации практических задач в ходе выполнения лабораторных работ

ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ, ВНЕСЕННЫХ В РАБОЧУЮ ПРОГРАММУ МОДУЛЯ

Номер изменения, дата внесения изменения,	номер страницы для внесения изменений
БЫЛО:	СТАЛО:
Основание:	
Подпись лица, ответственного за внесение и	зменений

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО МОДУЛЮ «СИСТЕМЫ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА» (ПРОТОТИП)

ОГЛАВЛЕНИЕ

1. Перечень компетенций с указанием этапов их формирования в процессе освоения
образовательной программы
2. Описание показателей и критериев оценивания компетенций на различных этапах их
формирования, описание шкал оценивания4
3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний,
умений и (или) опыта деятельности, характеризующие этапы формирования компетенций
в процессе освоения образовательной программы
4. Методические материалы, определяющие процедуры оценивания знаний, умений и
(или) опыта деятельности, характеризующие этапы формирования компетенций10
Лист изменений и дополнений, внесенных в фонд оценочных средств

1. ПЕРЕЧЕНЬ КОМПЕТЕНЦИЙ С УКАЗАНИЕМ ЭТАПОВ ИХ ФОРМИРОВАНИЯ В ПРОЦЕССЕ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Перечень компетенций (планируемых результатов освоения образовательной программы), выявленных в матрице компетенций, представлен в таблице 1 рабочей программы модуля «Системы искусственного интеллекта» (далее — Модуль) совместно с планируемыми результатами обучения по Модулю, а также в таблице 1 фонда оценочных средств (раздел 2) с указанием этапов (семестров) их освоения.

Результаты обучения вносят свой вклад в формирование различных компетенций, предусмотренных образовательной программой. В свою очередь, компетенции на разных уровнях категорий «знать», «уметь», «владеть» формируются блоками (разделами) Модуля, а также различными дисциплинами (модулями) образовательной программы (например: распределенные системы обработки информации, функциональное программирование и другие).

2. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ НА РАЗЛИЧНЫХ ЭТАПАХ ИХ ФОРМИРОВАНИЯ, ОПИСАНИЕ ШКАЛ ОЦЕНИВАНИЯ

Фонд оценочных средств (ФОС) предусматривает следующее:

описание комплекса **показателей** — дескрипторов освоения компетенций в виде результатов обучения, которые студент может продемонстрировать (таблица 1). Для контроля достижения каждого из них предусмотрены оценочные средства в виде вопросов, заданий и т.д.;

обозначение **критериев** – правил принятия решения по оценке достигнутых результатов обучения и сформированности компетенций.

Например, в качестве шкалы оценивания принимается 100-бальная система с выделением (градацией) оценок:

Рейтинг	Оценка на зачете
85–100	
71–84	Зачет
60–70	
0–59	Незачет

Показатели достижения планируемых результатов обучения и критерии их оценивания на разных уровнях формирования компетенций приведены в таблице 1.

Таблица 1. Показатели достижения планируемых результатов обучения и критерии их оценивания

1	2	3	4	5
Компетенция	Индикаторы и результаты обучения. Дескрипторы – основные признаки освоения компетенций (показатели достижения результатов обучения)	Этап (семестр)	Наименование оценочного средства	Критерии оценивания результатов обучения
Способен использовать знание основных методов искусственного интеллекта в последующей профессиональной деятельности в качестве научных сотрудников, преподавательных организаций высшего образования, инженеров,	ЗНАТЬ Методы разработки оригинальных алгоритмов и программных решений с использованием современных технологий	1		Правильность выполнения программ текущего контроля
технологов Способен выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности в области моделирования и анализа сложных естественных и искусственных систем	ВЛАДЕТЬ Навыками декомпозиции, формализации процессов и объектов для использования интеллектуальных программных решений		успеваемости	успеваемости

Например, критерии оценки результатов обучения для различных видов контрольных мероприятий приведены в следующей таблице:

Критерии оценивания контролей:

От 45 до 50 баллов: студент выполнил задание полностью правильно; логично, четко и ясно излагает ответы на поставленные вопросы; ответ носит самостоятельный характер, студент выполнил лабораторные работы в полном объеме.

От 38 до 44 баллов: при выполнении задания студент допустил отдельные неточности (несущественные ошибки); ответ отличается меньшей обстоятельностью, глубиной, обоснованностью и полнотой; однако допущенные ошибки исправляются самим студентом после дополнительных вопросов, студент выполнил лабораторные работы в полном объеме.

От 30 до 37 баллов: при выполнении задания студент допустил неточности и существенные ошибки; при аргументации ответа студент не применяет теоретические знания для объяснения допущенных ошибок, в целом ответ отличается низким уровнем самостоятельности, студент выполнил лабораторные работы в полном объеме.

От 0 до 29 баллов: студент не выполнил задание; в ответе на вопросы студент допускает ошибки в определении основных понятий; беспорядочно и неуверенно излагает материал, студент не выполнил лабораторные работы в полном объеме

Использование показателей и критериев оценивания компетенций на различных этапах их формирования совместно со шкалой балльно-рейтинговой системы позволяет формировать результаты обучения по Модулю.

Оценка результатов обучения

Неделя	Номер и название модуля	Формы контроля	Баллы (мин/ макс)
	1 семестр		
	Введение в искусственный интеллект	Контроль	30/50
	и основные методы машинного обучения для работы с табличными данными	ИТОГО	30/50
	Системы глубокого обучения	Контроль	30/50
		ИТОГО	30/50
	0.5	Контроль	30/50
	Обучение с подкреплением	ИТОГО	30/50
		ИТОГО за семестр	60/100

3. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ, НЕОБХОДИМЫЕ ДЛЯ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИЕ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ В ПРОЦЕССЕ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Выпускник, освоивший образовательную программу, должен обладать профессиональными компетенциями по тематическим модулям программы:

Код	Наименование	Результаты обучения
	тематического	
	модуля	
	Введение в искусственный	Знания:теоретические основы анализа данных и машинного
	интеллект и	обучения;
	основные методы машинного обучения	• специфика работы алгоритмов машинного обучения.
	для работы с	Умения:
	табличными	• применение методов машинного обучения,
	данными	подготовка данных и интерпретация результатов.
		Навыки (опыт деятельности):
		• интересуется новыми трендами в своей
		профессиональной отрасли, рассматривает
		их с точки зрения применения в своей деятельности;
		• оценивает применимость алгоритмов, возможные
		риски и последствия ошибок, находит оптимальные
		решения для рабочих задач
		Знания:
		• принципы обучения и применения нейронных сетей.
		• архитектуры глубоких нейронных сетей,
		применяемых в решении практических задач
		связанных с анализом изображений и текстов;
	Системы глубокого обучения	Умения:
		• настройка необходимого окружения для работы с
		нейронными сетями.
		• применение и дообучение предобученных
		нейронных сетей из доступных библиотек
		Навыки (опыт деятельности):
		• владеет навыком проведения полного цикла
		вычислительного эксперимента, отражения хода

	выполнения проекта и получения результатов в отчетах и документации; владеет навыком использования существующих программных библиотек и моделей, создания программных реализаций глубоких нейронных сетей
Обучение с подкреплением	 Знания: теоретические основы и алгоритмы обучения с подкреплением; применение обучения с подкреплением для практических задач. Умения: выбор и реализация алгоритмов обучения с подкреплением с учетом специфики задачи адаптация и настройка алгоритмов обучения с подкреплением под определенную среду. Навыки (опыт деятельности): интересуется новыми трендами в своей профессиональной отрасли, рассматривает их с точки зрения применения в своей деятельности; владеет навыком использования существующих
	программных библиотек и моделей, создания программных реализаций на основе алгоритмов обучения с подкреплением

Средства для оценки различных уровней формирования компетенций по категориям «знать», «уметь», «владеть» обеспечивают реализацию основных принципов контроля, таких как объективность и независимость, практико-ориентированность, междисциплинарность.

С учетом этого контрольные вопросы (задания, задачи), входящие в ФОС, для различных категорий и уровней освоения компетенций могут иметь следующий вид.

ЗНАТЬ

Примеры:

- 1. Типы задач машинного обучения и классы алгоритмов, к ним применяемые.
- 2. Основные направления развития исследований в области систем искусственного интеллекта.
- 3. Теоретические основы алгоритмов машинного обучения.

УМЕТЬ

Примеры:

- 1. Подготовить данные к использованию алгоритма машинного обучения.
- 2. Оценивать качество решений систем машинного обучения.
- 3. Адаптировать алгоритмы машинного обучения к решению практических задач.

ВЛАДЕТЬ

Примеры:

- 1. Методология разработки решений машинного обучения.
- 2. Примеры практического применения архитектур искусственного интеллекта.
- 3. Методы онлайн тестирования решений машинного обучения.

4. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРЫ ОЦЕНИВАНИЯ ЗНАНИЙ, УМЕНИЙ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИЕ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ

4.1. Примеры (макеты) методических материалов, определяющих процедуры оценивания знаний, умений и (или) опыта деятельности

Наименование	Краткая характеристика оценочного	Представление
оценочного	средства	оценочного средства
средства		в фонде
Текущий контроль	Средство проверки освоения уровней	Комплекты билетов
успеваемости	«знать», «уметь» компетенций	(заданий)

Комплект билетов (примерный)

Билет 1.

- 1.1 Байесовский классификатор. Оценка признаков (Gaussian, Bernoulli, Multinomial). EM алгоритм.
 - 1.2 Кластеризация. kMeans, kMeans++, MeanShift, DBSCAN.

Билет 2.

- 2.1 Ансамбли. Soft and Hard Voting. Bagging. Случайный лес.
- 2.2 Метрический классификаторы. kNN. WkNN.

Билет 3.

- 3.1 Линейная регрессия. LASSO, LARS. CART.
- 3.2 Деревья решений. Информационный выигрыш. Ошибка классификации, энтропия, критерий Джини. Прунинг.

Билет 4.

- 4.1 Глобальный поиск. Случайный поиск. Grid search. Случайное блуждание. Байесовская оптимизация.
 - 4.2 Линейная регрессия. Полиномиальная регрессия. Гребневая регрессия.

Билет 5.

- 5.1 AdaBoost. Градиентный бустинг решающих деревьев.
- 5.2 Кластеризация. Agglomerative Clustering. Метрики кластеризации.

Билет 6.

6.1 Оценка классификации. Эффективность по Парето. Precision-Recall и ROC кривые. AUC.

9.2 Нейронные сети. Перцептрон Розенблатта. Обратное распространение градиента. Функции активации. Softmax.

Билет 7.

7.1 Локальный поиск. Hill Climb и его разновидности. Отжиг. Генетический алгоритм.

7.2 Метод опорных векторов. Ядра.

Перечень лабораторных работ (примерный)

Общие рекомендации к лабораторным работам: для разных уровней подготовки студентов можно использовать разную глубину реализации решения. Так, для студентов нетехнических специальностей задание может заключаться в применении готовых методов из библиотек или заполнением пропусков в программах, где большая часть подготовлена преподавателем. Для студентов технических специальностей задание будет заключаться в реализации алгоритмов без использования готовых решений.

ЛР1.1 Методы работы с таблицами в Python. Агрегация и визуализация данных. Проведение первичного анализа данных.

Цели: изучение методов работы с данными в Python и проведение первичного анализа данных.

Задание: загрузите датасет в pandas датафрейм. Выведите основные параметры датасета. Определите, сколько в датасете случаев отсутствия признаков. Определите, сколько признаков являются категориальными. Визуализируйте распределение признаков по классам. Визуализируйте зависимость между признаками.

ЛР1.2 Использование и сравнение алгоритмов классификации: kNN, решающие деревьея и их ансамбли, логистическая регрессия.

Цели: применение и оценка алгоритмов классификации.

Задание:

Разделите датасет на обучающий и валидационный с сохранением пропорций классов. Классифицируйте точки из датасета с помощью алгоритмов kNN, логистической регрессии, CART, случайного леса, CatBoost. Подберите лучшие параметры алгоритмов с

помощью валидационной выборки. Сравните время работы алгоритмов и зависимость от предобработки данных.

ЛР1.3 Использование и оценка алгоритмов регрессии. Подбор оптимальных

параметров регрессии.

Цели: изучение алгоритмов регрессии.

Задание:

Примените метод линейной регрессии для решения задачи на датасете. Добавьте в датасет полиномиальные признаки. Добавляйте признаки пока не увидите переобучение на валидационном датасете. Примените гребневую регрессию и LASSO, чтобы избавиться от переобучения.

ЛР1.4 Оптимизационные задачи и их решения. Подбор гиперпараметров алгоритма с помощью методов оптимизации

Цели: изучение алгоритмов решения оптимизационных задач.

Задание:

1. Оптимизируйте длину маршрута в задаче комивояжера с помощью алгоритмов hill climb, отжига и генетического алгоритма. Выведите получившийся путь и его длину.

2. Оптимизируйте гиперпараметры алгоритма машинного обучения (на выбор) с помощью случайного поиска, поиска по решетке, алгоритма hill climb, генетического алгоритма.

ЛР2.1 Классификация изображений и трансферное обучение.

Цели: изучение методов глубокого обучения для работы с изображениями.

Залание:

Загрузите датасет и создайте итератор для модели глубокого обучения. Загрузите предобученную на ImageNet сверточную сеть (AlexNet, VGG или ResNet) и добавьте к backbone полносвязный слой для обучения. Обучите нейронную сеть на, визуализировав график функции потерь на обучающей и валидационной выборке. Реализуйте модуль применения нейронной сети к данным, проверьте качество обучения на тестовой выборке.

ЛР2.2 Работа с текстами и их векторными представлениями.

Цели: изучение моделей векторного представления текстов.

Задание:

Скачайте предобученные вектора для словаря. С помощью любого классификатора машинного обучения (kNN, SVM, CatBoost) классифицируйте тексты из датасета по сумме векторов слов. Классифицируйте тексты с помощью LSTM сети.

ЛР3.1 Применение Q-Networks для решения простых окружений.

Цели: изучение применения обучения с подкреплением для решений задач контроля.

Задание:

Обучите простую полносвязную Q-сеть для решения окружения LunarLander.

4.2. Процедуры оценивания знаний, умений, формы и организация текущего контроля успеваемости и промежуточной аттестации обучающихся

Текущий контроль успеваемости и промежуточная аттестация студентов ведется в соответствии с Положением о текущем контроле успеваемости и промежуточной аттестации образовательной организации

Текущий контроль успеваемости

Модуль делится на два блока. Каждый блок включает в себя изучение законченного раздела, части Модуля.

Текущий контроль по Модулю осуществляется по календарному учебному графику. Сроки контрольных мероприятий (КМ) и сроки подведения итогов по Модулю отображаются в рабочих учебных планах на семестр. Студент должен выполнить все контрольные мероприятия, предусмотренные Модулем к указанному сроку, после чего преподаватель проставляет балльные оценки, набранные студентом по результатам текущего контроля успеваемости по Модулю.

Контрольное мероприятие считается выполненным, если за него студент получил оценку в баллах не ниже минимальной оценки, установленной программой модуля по данному мероприятию.

Студенты, не сдавшие контрольное мероприятие в установленный срок, продолжают работать над ним в соответствие с порядком, принятым образовательной организацией.

Промежуточная аттестация

Формой промежуточной аттестации по Модулю является зачет.

Оценивание Модуля ведется в соответствии с Положением о текущем контроле успеваемости и промежуточной аттестации студентов образовательной организации.

Например, методика оценки по рейтингу

Студент, выполнивший все предусмотренные учебным планом задания и сдавший все контрольные мероприятия, получает итоговую оценку по Модулю за семестр в соответствии со следующей шкалой:

Рейтинг	Оценка на зачете
85–100	
71–84	Зачет
60–70	
0–59	Незачет

Рейтинг студента по Модулю за семестр определяется как сумма баллов, полученных им за все блоки Модуля, и баллов за промежуточную аттестацию. Максимальное количество баллов за Модуль в семестре устанавливается равным 100.

ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ, ВНЕСЕННЫХ В ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Номер изменения, дата внесения изменения, номер страницы для внесения изменений		
БЫЛО:	СТАЛО:	
BBB10.	CITATO.	
Основание:		
Подпись лица, ответственного за внесение и	зменений	